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THESIS

Abstract. Results are quoted for the "physical three~body transition
operator yielding the volume~independent three-body reaction coefficient,

in terms of which one computes the three-body elastic scattering rate

vhen three initially free independently moving particles collide under

the influence of short range forces.

@

Consider the scattering of three particles o =1 2., 3 which for
the purposes of this Qork may.be considered elementary, spinless and
distinguishable. A major objective of the theory is to determine the
physical three-body reaction éoefficient

> > > > > > o

w(irf) = w(ki+k 'li’kZi’k3i -> klf’ka’ka)

expressing the probability of three-body elastic scattering in the
> -
laboratory system, from initial momenta ﬁkai = mv.s to final momenta

T i . .
ﬁkaf. The reaction coefficient i 1s related to observation by

AT LT = N S T ST
w(ki%“f thZRBTw(Li*kf) .
A > -> - )
where -delfdszdkgf is the observed number of scatterings per unit

-

> -+ .
time into wave number ranges dk ,dsz,dk3C in a (large) volume T con~
’ r

1f

taining N0 particles o per unit volume moving with the precise
Vo > A . ,

velocities Vo Presumably w/t should be independent of 1, i.e.,

presumably in a correctly formulated theory the computed reaction co-

efficient W will be independent of 7.
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If only by analogy with known results *" for collisions between two
incident bodies, one expects that -
1£772£7 3¢
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Woke) =070 @2n"7 |0 (ki+kf)] 8 (B.-B,) 8 (K -K, ) dk, dk, dk (1)
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where E and %

=

are respectively the total energy and momentum in the

laboratory system, and where

!

-t > o _ =t =% ey
T (kyvk,) = <f|T7|i> = Ve T

is the center-of-mass system matrix element of the "physical" three-particle

-

A =t P .
transition operator T  between initial and final plane wave states ¢ . A
" . .2 ol [ ) 3 rt‘ . ] - b I 4 - o $
determinative definition of T" dis not immediately apparent. What is
apparent is that [granting the validity of Eq. (1)] the physical transition
cperator T must differ from the customarily employed "total" transition
operator

(@ = v - vie™ (m)

+ . ,
where V is the total interaction and G( ) is the outgoing total Green's

function. The center-of-mass system matrix elements

<g|T|i> = 9.1 § (2)

i

contain G—functionsé’ [in addition to those already appearing in Eq. (1)]

which -~ when directly inserted into (1) -~ make the right side of (1) pro-

" portional to the squares of &-functions, i.e., make (1) mathematically mean-
. . L2

ingless. Reinterpretation of the squared 6-functions along lines™ which

yileld sensible results for reaction coefficients in two~body collisions, e.g.,
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[6(K-%)]% = @26 ) |ak exp[ 1R, R )R
) \f \i’ = il £ \i : exp[l \i“ £ i]

-~ -3 o . 3 -3 T
= (2m) G(Lf~Ki) J drR & (2n) "t 5(Kf ki) (3)

would lead to a three~body w depending on the volume T, i.e., to an
inconsistency with the presumption that the number of three-body scattering
events in T should be strictly proportionél to T in the limit oo,
Thus the center-of-mass matrix elements <fITt!i> must not contain the
§-functions present in (2).

The foregoing assertions have motivated me to seek a coﬁfiguration space
derivation of Eq. (1) and of a closed form expression for Tt. Some of the
results6 of this quest are quoted below, without prouf.7 A configuratioﬁ
space approach has been adopted because: (i) derjvations of Eq. (1) in the
literature8 do not distinguish between T and Tt,.and customarily are

couched essentially ab initio in the momentum representation (which also happens

to be the most natural fepresentation for utilization of diagrammatic methodss;
(ii) previous investigat;ions2 have shown that formulating scattering theory in
configuration space can be both useful and instructive. In their totality

the configuration space results obtained do furnish a welcome confirmation

of the general correctness of the customary m?mentum space procedures, which
usually attain their goals [e.g., a derivation of Eq..(l)] much more rapidly
thén do configuration space procedures. Of course, this confirmation would

be grétuitous were it hot for the facts that the configuration space and
momentum space formulations each involve some quéstionable mathematical
manipulations, after ctarting from equally questionablé by no means obviously
identical physical assumptions. In essence, the work on three-three

elastic scattering reported here can be considered to be a first step

in the direction of deducing correct formal expressions for threce-three

resctlons between composite systems; in the field of chemistry such reactions



are iwmportant and often measurable.
Let

ACERHORFRSIE @

be the properly and uniquely specified [e.g., via the Faddeev equationsgj
solution to Schrédinger's equation describing the collision between particles

1,2,3 in the initial plane wave state

1

wi(E) = exp [i(ﬁli'¥ + Xk, o r, + k =r )]

1 94Ty exp [i ﬁi;;]

where, for simplicity, it is supposed that all forces are short range. Define

Eit(+)(;§ﬁ) to be that part of o (4)(r E) which behaves asymptotically like

the center~of~mass system free space Green's function

=~ (+) > ’* I T B TR =P ()
(Tj,r? 3 ll ?rz Sr3 )E> - GF (rsl 3E)
hen T.,%,,7 h h infinity i h a fashion that no r .= ¥ ~ ¥
&l A § / s 5 h =y -7
when ¥,,r,,rs each approach infinity in such a fashion that no rqB r,T g
remains finite. Then I assume that the physical three-body elastic scattering

- N - - £ ()
is described by @it(4)(E). -Now, computing the contribution made by @l (

to the center-of-mass system outgoing probability current [which determires
the reaction coefficient in the time-independent configuration space form-

ulation of scattering theorylone finds Eq. (3) holds, with %t(ﬂi+if) given

by =
15»E i
= t(+) .3 ot o
] F) = - e T > . 5
llm; @i (r;E) C (B) 5/2_ T (kl kf) (5)
r-%ool‘\) p
-3
In (5), vf denotes a direction -~ in the nine~dimensional configuration space
' R e ' ) - .
subtended by XysTy,Tg = along which no g remains finite as every
> - - . >
Y =71rmn approaches infinity, where nm . 1s the direction of r in
o o af of o
physical space; Cf 1s specified by n ‘ and the limiting ratios ro/rB‘ The
o :
final momenta nk g are in turn specificed by 3f, lle along Kaf’ and have
(¢4 L.

-¥
thelr expected magnitudes for scattering into directions n .. Furthermore,
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CZ(E> is a known constant, depending on ¥ and the particle masses ms

while
(m. +m +m )p =2’r’1n2(mmr2 4+ m,m, ? !mmr )
1 172712 2MsT 23 3131 ¢
The scattered wave ¢i(+) in (4) can be written in the form
s ¢ ) o () ¢h) s (P $S (P, $S(H), S(+)+® d(+) (6)
i 12 23 31 23 31 12 i
where
CON U R ]
¢12 = (le E-ig) Vlzwi(L) , etc.
9<—=>_ N < e | oD 4 o (D) _
93 = %2331 7t %319 (Hyg=B-ie) = Vyq [0g7 + 05 7], ety
The quantity @fz)ois the laboratory system scattered wave when particies‘

1,2,3 collide in the absence of interactions other than Vl?(?iz); in. other
words, lé ) is that part of ®( + which is associated with the bubble

diagram of TFig. la. The corresponding center-of-mass system ( )(r) has
a plane wave factor in configuration space, denoting the fact that during
the collision represented by Fig. la particle 3 . moves with constant

velocity relative to the center of mass of the -entire 1,2,3 system. There-

( )

fore no parts of @

= ()
Cp

behave asymptotically like the everywhere outgoing

( )

should be Jnc]udﬂc in ®

in (6) are the parts of ®( )

NS )
%2312

-
(r;r';E) as r o+ o I[vf, i.e., no parts of o,

C s s(+ . .
The quantities @aéﬁé associated with

double-scattering bubBle dlagrams; for example, the term in (7) is

associated with the diagram of Fig. 1b. It can be shown that the correspond-

() >
2312 ()

at +)
i

ing ¢
S(*)

cannot include all parts of ¢ » because

~(+)
2312

e DGy 575/2

fore

>
as 1 > @ lJvf- On the other hand, ¢ (r) also contains contributions

~5/2 t ()

. . > A
behaving like 3 as r +» o I‘vf, and these should be included in ® .

remaining ¢3(+) contribution to ¢i(+) is assoclated with the set of all

(7)

t(+)

, s \ 3 . . -2 o 4
contains contributions behaving like p° " as r > « llvf; there-

The
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triple (e.g., Fig. le) and higher order bubble diagrams. It can be seen

that ¢ (r>(1

; > >
) behaves asymptotically like ( )(r,r‘) r o o H\)f5
. ' :
except aleng an inconsequential subset v% of lower dimensionality (than the

).

—+

5-dimensional manifold spanned by Ve

It now can be concluded that the physical Lrau81tlon amplitude
s -3 . . '
Tt(ki+kf),includes all matrix elements corresponding to triple and higher order

s
bubble diagrams. In addition, Tt(ki+kf) includes the matrix elements
corresponding to the double~scattering bubble diagrams of type Fig. 1b,
if amdonly if each two-particle scattering fails to conserve energy, i.e., if
and only if the intermediate state (located in Fig. 1b at the dashed line)
- the e e e (0 .
lies off the energy shell. In other words, the parts of @2312(r) behaving
2 = > : . ’ .
like p ™ as r + m‘llvf are associated with those bubble diagrams Fig. 1b
for which the intermediate state lies on the energy shell, i.e., for which
the 1ndLv¢dual bubbles in Fig. 1b represent actual (because.they are- energy--
conserving) two-particle scatterings; of course, momentum always is conserved
¢

in each bubble (two»particle scattering) in Fig. 1b. The matrix elements

corresponding Lo the various dlaglams in Fig. 1 are computed in aCCOLdaDCC

with the usual rules. fs In particular, the contribution of Fig. 1b to
e t ~> -_)\ ] Al
T (Liﬂkf) is
. _ N
st 2y Kpgeltyy  [Boke ) i, >
(k >k g o= (8)
2312 : .2 2 2 .
! AT - kI,
124

where is the reduced mass of 1, 2 tlZi is the purely two-~body transition

H12
2.2
operator for scattering of particles 1,2 evaluated at energy F12 = h k12 /2u12,

f

s)- »),
* -3
RN - . = A, B ic e
and similarly for Cosgs ulz(v ) Hh l?’ etc.; and A, B, which denote

momentwm vectors in the intermediate state, are completely specified by the

3 2 2 ,
glven initial and final momenta ki,kf. At AT = kl?i’ the Intermediate state



e
In ¥ig. 1b lies on the energy shell, and the right side of (8) is veplaced by
Zero.

o . 0 . ) (3 »‘) : ~) . ] V
If orxder of dntegration and 1im » > l,v_ could be interchanged

{- d
in (H mF ie) ™ V ®( >3 the scattered wave contribution O( ) (1) would

23712 2312
. +) > > -
behave like ( )(r;r') as r > ® Ilgfs because in this limit
(i — (1)
)(r r')= (H 36) bchuves asymptotically like GF<{)(£;?'). Obviously

this interchange must be uwnjustified, since we already know é?i2(f) does

. Y - = »), -_).
not behave asymptotically like GF(‘)(r;r‘). If the interchange is performed

nevertheless, one obtains the obvious analogue of (5), which analogue defines

( -) .
0539 Part

m

Y R _
the contr Jbuinon 12312(ki+kf) made to T(ﬁi+ﬁ%) by the of

g,
1

. = > . .
. One finds l231?<ki+kf) is precisely the usual matrix element associated

with the diagram Fig. 1b; when written in configuration space this matrix

2
124 AT).

same §-function contribution is obtained if one returns to the original

element is seen to contain a contribution proportional to (k The

[+

momentum representation formula (8) for this matrix element —— wherein

2 .2

, 2 .2 he ;
A ~k12i—1g replaces A"~k in the denominator == and makes the conventional

124
, . . 2 .2 . N 2 :
relnterpretatlonlo(ﬁ?llm (A"-Kk7, . ~ig) . as ¢ > 0 when A?=k2 .« This
] . , , 121 121

‘ N . o
one~dimensional S-function contribution to T(ki+kf), if inserted into (1)

and reinterpreted along the lines (3), would yield a contribution to @ pro-

- 473 o . . N Lo
portional to 1 3 & simple geometrical argument shows this is precisely
the rt-dependence cne expects to observe if the experimentalist measuring the
three-body scattering rate does not so arrange his apparatus that actual
double scattering events are excluded. In other words, in the configuration

. X 2 2 Pt S

space approach an unwanted G(klZi»A ) contribution to T (ki+kf) is
obtained only because a mathematically unjustified manipulation has been per-

formed; however, the result of this unjustified manipulation turns out to have

a physically sensible interprctation. The same remarks can be made concerning



other divergent expressions which arise in the configuration space formulation
of scattering theory; in general these divergences arise because of invalid
mathematical operations, but lead to physically interpretable results never-
theless. |

Finally'I note that the Faddeev reformulation of the Lippmann-
Schwinger equation in no way mitigates the reacfion rate prediction complica-
tions associated with the double-scattering diagrams Fig. 1b. In fact,
if the Faddeev equation59 are written in the form [using Fadaeev's notation
in essence]

®(1) v - G ®(2)+ ®(3)] , ete.

" GogVsgly = CypTysl

then it can be seen that

(o), @(3)]+ T3l[®(3)+'®(1)]+T12[®<1)+ 021y = oS g8 (F) s () ) d(H)

= Gp{T 23 o3 12

F 23
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FIGURE CAPTION

1. Scattering diagrams: (a) two-particle scattering between

1, 2 wherein 3 is present but non-interacting; (b) double
scattering, first between 1, 2 and then between 2, 3;

(c) a typical triple scattering diagram.
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